我们为运动计划问题提出了高斯变异推理框架。在此框架中,运动计划是对轨迹分布的优化,以通过可拖动的高斯分布近似所需的轨迹分布。同等地,提议的框架可以视为具有熵正则化的标准运动计划。因此,获得的解决方案是从最佳确定溶液到随机溶液的过渡,并且所提出的框架可以通过控制随机性水平来恢复确定性解决方案。为了解决这种优化,我们采用了自然梯度下降方案。进一步利用了由分解的目标函数引起的提议配方的稀疏性结构,以提高算法的可扩展性。我们在模拟环境中评估了几个机器人系统的方法,并表明它可以通过平滑的轨迹来避免碰撞,同时为确定性基线结果带来了鲁棒性,尤其是在具有挑战性的环境和任务中。
translated by 谷歌翻译
图形卷积网络(GCN)及其变体是为仅包含正链的无符号图设计的。许多现有的GCN来自位于(未签名)图的信号的光谱域分析,在每个卷积层中,它们对输入特征进行低通滤波,然后进行可学习的线性转换。它们扩展到具有正面和负面链接的签名图,引发了多个问题,包括计算不规则性和模棱两可的频率解释,从而使计算有效的低通滤波器的设计具有挑战性。在本文中,我们通过签名图的光谱分析来解决这些问题,并提出了两个不同的图形神经网络,一个人仅保留低频信息,并且还保留了高频信息。我们进一步引入了磁性签名的拉普拉斯式,并使用其特征成分进行定向签名图的光谱分析。我们在签名图上测试了节点分类的方法,并链接符号预测任务并实现最先进的性能。
translated by 谷歌翻译
近年来,基于深度学习的面部检测算法取得了长足的进步。这些算法通常可以分为两类,即诸如更快的R-CNN和像Yolo这样的单阶段检测器之类的两个阶段检测器。由于准确性和速度之间的平衡更好,因此在许多应用中广泛使用了一阶段探测器。在本文中,我们提出了一个基于一阶段检测器Yolov5的实时面部检测器,名为Yolo-Facev2。我们设计一个称为RFE的接收场增强模块,以增强小面的接受场,并使用NWD损失来弥补IOU对微小物体的位置偏差的敏感性。对于面部阻塞,我们提出了一个名为Seam的注意模块,并引入了排斥损失以解决它。此外,我们使用重量函数幻灯片来解决简单和硬样品之间的不平衡,并使用有效的接收场的信息来设计锚。宽面数据集上的实验结果表明,在所有简单,中和硬子集中都可以找到我们的面部检测器及其变体的表现及其变体。源代码https://github.com/krasjet-yu/yolo-facev2
translated by 谷歌翻译
借助视频级标签,弱监督的时间动作本地化(WTAL)应用逐个分类的本地化范式来检测和分类该动作在未修剪的视频中。由于分类的特征,不可避免地会误导特定的背景片段以提高分类器在WTAL中的可区分性。为了减轻背景的干扰,现有的方法试图通过用伪snippet级注释对背景片段进行建模,从而扩大动作和背景之间的差异,这在很大程度上依赖于人工假设。与以前的作品不同,我们提出了一种对抗性学习策略,以打破采矿伪背景片段的局限性。具体而言,背景分类损失迫使整个视频被背景梯度增强策略视为背景,从而使识别模型混淆。相反,前景(动作)损失指导模型在这种情况下关注动作片段。结果,两个分类损失之间的竞争驱动了模型以提高其行动建模能力。同时,一个新型的时间增强网络旨在促进该模型基于提议的策略来构建亲和力摘要的时间关系,以进一步改善动作定位的性能。最后,在Thumos14和ActivationNet1.2上进行的广泛实验证明了该方法的有效性。
translated by 谷歌翻译
由于其在现实世界应用程序中部署机器学习模型中的重要性,因此无法分布(OOD)检测最近受到了机器学习社区的关注。在本文中,我们通过对特征的分布进行建模,提出了一种不确定性量化方法。我们进一步结合了一种有效的合奏机制,即批处理 - 构造批处理的随机神经网络(BE-SNN)并克服特征崩溃问题。我们将提出的BE-SNN的性能与其他最先进的方法进行了比较,并表明BE-SNN在几个OOD基准上产生了卓越的性能,例如两个漫画数据集,FashionMnist,FashionMnist vs Mnist Dataset,FashionMnistvs notmnist数据集和CIFAR10 vs SVHN数据集。
translated by 谷歌翻译
我们的目标是将denoisis扩散隐式模型(DDIM)扩展到一般扩散模型〜(DMS)。我们没有像原始DDIM论文那样构建非马尔科夫no噪声过程,而是从数值的角度研究了DDIM的机制。我们发现,在求解相应的随机微分方程时,可以通过使用分数的一些特定近似值来获得DDIM。我们提出了DDIM加速效应的解释,该解释还解释了确定性抽样方案的优势,而不是随机采样方案进行快速采样。在此洞察力的基础上,我们将DDIM扩展到一般的DMS,并在参数化分数网络时进行了小而微妙的修改。当应用于批判性抑制的Langevin扩散模型时,最近提出的一种新型的扩散模型通过以速度增强扩散过程,我们的算法在CIFAR10上达到了2.28的FID分数,仅具有50个数量的得分功能评估(NFES)(NFES〜(NFES) )和仅有27个NFE的FID分数为2.87,比所有具有相同NFE的现有方法要好。代码可从https://github.com/qsh-zh/gddim获得
translated by 谷歌翻译
过去的几年见证了扩散模型〜(DMS)在生成建模任务中生成高保真样本方面取得的巨大成功。 DM的主要局限性是其臭名昭著的缓慢采样程序,通常需要数百到数千至数千个的时间离散步骤,以达到所需的准确性。我们的目标是为DMS开发快速采样方法,该方法的步骤少得多,同时保留了高样本质量。为此,我们系统地分析了DMS中的采样程序,并确定影响样本质量的关键因素,其中离散化方法至关重要。通过仔细检查学习的扩散过程,我们提出了扩散指数积分取样器〜(DEIS)。它基于设计用于离散的普通微分方程(ODE)的指数积分器,并利用学习扩散过程的半线性结构来减少离散误差。所提出的方法可以应用于任何DMS,并可以在短短10个步骤中生成高保真样本。在我们的实验中,一个A6000 GPU大约需要3分钟才能从CIFAR10产生$ 50K $的图像。此外,通过直接使用预训练的DMS,当得分函数评估的数量〜(NFE)的数量有限时,我们实现了最先进的采样性能,例如,使用10 NFES,3.37 FID和9.74的4.17 FID,仅为9.74 CIFAR10上的15个NFE。代码可从https://github.com/qsh-zh/deis获得
translated by 谷歌翻译
为了在商店中充分利用计算机视觉技术,需要考虑适合零售场景特征的实际需求。为了实现这一目标,我们介绍了联合零售数据集(Unitail),这是针对检测,阅读和匹配算法的产品的基本视觉任务的大规模基准。凭借注释的180万个四边形实例,该Unitail提供了一个检测数据集,以更好地对齐产品外观。此外,它提供了一个包含1454个产品类别,30k文本区域和21k转录的画廊风格的OCR数据集,以实现对产品的强大阅读并激励增强的产品匹配。除了使用各种最新技术对数据集进行基准测试外,我们还定制了一个新的检测器以进行产品检测,并提供了一个简单的基于OCR的匹配解决方案,以验证其有效性。
translated by 谷歌翻译
在概率密度范围内相对于Wassersein度量的空间的梯度流程通常具有很好的特性,并且已在几种机器学习应用中使用。计算Wasserstein梯度流量的标准方法是有限差异,使网格上的基础空间离散,并且不可扩展。在这项工作中,我们提出了一种可扩展的近端梯度型算法,用于Wassersein梯度流。我们的方法的关键是目标函数的变分形式,这使得可以通过引流 - 双重优化实现JKO近端地图。可以通过替代地更新内部和外环中的参数来有效地解决该原始问题。我们的框架涵盖了包括热方程和多孔介质方程的所有经典Wasserstein梯度流。我们展示了若干数值示例的算法的性能和可扩展性。
translated by 谷歌翻译
我们呈现路径积分采样器〜(PIS),一种新型算法,用于从非正规化概率密度函数中绘制样本。 PIS建立在SCHR \“odinger桥问题上,旨在恢复鉴于其初始分布和终端分布的扩散过程的最可能演变。PIS从初始分布中抽取样品,然后通过SCHR \”传播样本“少剂桥到达终端分布。应用Girsanov定理,通过简单的先前扩散,我们将PIS制定为随机最佳控制问题,其运行成本是根据目标分布选择控制能量和终端成本。通过将控件建模为神经网络,我们建立了一种可以训练结束到底的采样算法。在使用子最优控制时,我们在Wassersein距离方面提供了PIS的采样质量的理论典范。此外,路径积分理论用于计算样本的重要性权重,以补偿由控制器的次级最优性和时间离散化引起的偏差。我们通过关于各种任务的其他启动采样方法进行了实验证明了PIS的优势。
translated by 谷歌翻译